Advanced development and debugging of ARM®-based devices
using Atollic® TrueSTUDIO® development tools

As any builder, handyman, or software developer knows, the right tools make all the difference in
meeting deadlines, working efficiently and delivering a quality product. In embedded development the
quality of your tools often determines the length and difficulty of the project schedule, particularly
when it comes to debugging, test, and software optimization.

Most developers will acknowledge that writing
code is the easy part. But a nasty bug—whether it
is a race condition, a seemingly random artifact or
an unpredictable crash condition can leave a
developer ready to tear his hair out. This is due in
large part to ever-increasing system complexity as
competitive pressure and market opportunity
introduces new features within already tight
delivery schedules.

Your challenge as the developer is to find
development tools you can trust: tools that are
easy and intuitive to use with powerful features
that can assist you in writing better code and in
resolving difficult problems or isolating hard-to-
find bugs; and a knowledgeable and responsive
tech support team to assist when you can’t figure
out how to use the tool in your situation.

In this paper we will show you how the right tools
can help you efficiently develop high quality
software on ARM-based microcontrollers using the
Atollic TrueSTUDIO C/C++ IDE. Since most
development tools give you an editor, compiler,
linker and debugger, we are going to spend time in
this article on some of the advanced features that
are not usually available in embedded tool chains.

We will touch on tools to help you improve the
quality of your code and look at advanced
debugging capabilities using powerful software
visualization and analysis.

Overview

Atollic® TrueSTUDIO® development tools for
ARM® devices are a step above other IDEs with an
unmatched feature set for professional software
development. These are the kind of tools you want
on your desktop if you are serious about your code
and about keeping your project on track.

Some of these powerful features include project
wizards, parallel compilation, MISRA-C checking,
code complexity analysis, and source code review
features plus RTOS-aware debugging with a built-in
crash analyzer, support for multicore and multi-
processor debug, event-, data- and instruction
tracing, peripheral register viewers, and real-time
variable watch.

High quality code starts at the beginning
One way to reduce the number of bugs you need
to track down is to improve the quality of the code
you write in the first place. Since there are
numerous books and articles on the topic of
writing quality code we will not go into great detail
on this topic. What we will say is that the right
tools and development process can assist you in
avoiding problematic code.

=] Inspection Summary i3 . ¥ Violation| (= Code Metric

Coding Testing

Deployed

It is more expensive to find and fix bugs in later phases

Integrated Code Analysis Tools

One way to assist you in improving code quality is
to use static source code analysis tools. Such tools
can examine the code you have written and give
you a report back to help you make improvements.
If such tools are integrated into the IDE it is even
easier to apply these benefits rather than jumping
in an out of your development environment.

Checking your code against a best-practice coding
standard such as MISRA®-C can help you ensure
that you are not using unsafe, unreliable or non-
portable constructs in your software.

=08

[Rule] Distribution violations (%)

Total Violations 35

Compile-failed files 0
RuleID Count Rule title -
MISRA_08_01 6 Functions shall have prototype declarations and the prototype shall be visible at both th) =
MISRA_05_07] Mo identifier name should be reused.
MISRA_06_03 5 typedefs that indicate size and signedness should be used in place of the basic numerica
MISRA_20_09 5 The input/output library <stdic.h> shall not be used in production code.
MISRA_08_10 4 All declarations and definitions of objects or functions at file scope shall have internal lir
MISRA_08_02 4 Whenever an object or function is declared or defined, its type shall be explicitly stated.
MISRA_12 01 1 Limited dependence should be placed on C's operator precedence rules in expressions.
MISRA_16_08 1 All exit paths from a function with nen-void return type shall have an explicit return state
MISRA_17 04 1 Array indexing shall be the only allowed form of pointer arithmetic.
MISRA_17 01 1 Pointer arithmetic shall only be applied to pointers that address an array or array elemen
MISRA_19 15 1 Precautions shall be taken in order to prevent the contents of a header file being include
MISRA_ 12 12 0 The underlying bit representations of floating-point values shall not be used.
MISRA 12 13 1] The increment (++) and decrement (--) operators should not be mixed with other opera
MISRA_12_10 1] The comma operator shall not be used.
“ 1

MISRA_DS_01
=17.14%
MISRA_05_07
=17.14%

ete (1231 item
(s)=2571% ~

MISRA_DG_03
= 14.20%

- | |® MISRA_DB_01 & MISRA_D5_07
s MISRA_20_09 @ MISRA_08_10

MISRA_D6_03
ete (123\item(s))

The integrated MISRA-C checker shows a violation summary with graphical display showing types of errors

© 2014 Atollic AB

For more information contact sales@atollic.com

Even if you are well trained in the MISRA standard
it is impossible to ensure coding standards
compliance without support from a tool.
TrueSTUDIO comes with a highly standards-
compliant integrated MISRA-C code checker. When
enabled, TrueSTUDIO automatically checks your
code for compliance and identifies any code lines
that break MISRA-C rules. It is the only embedded
IDE that explains the MISRA rule for offending
lines, and gives examples of good and bad code for
each rule. Many developers use it as a teaching-aid
because it highlights what code construct
triggered the MISRA violation and shows you how
to rewrite the code to remove the violation. Our
MISRA checker additionally provides compliance
statistics in textual and graphical format, for a
quick at-a-glance overview of the current state.

Code Complexity Analysis and Code Metrics
The complexity of your code is often an indicator
of future problems because code that is too
complex can be difficult to understand, test and

maintain. The more iterations and conditional code
a function has, the higher its complexity level and
the more likely it is to include more errors.
Fortunately, TrueSTUDIO includes a helpful tool
that uses an industry-standard algorithm to
measure the complexity of your code. Code
complexity can easily be viewed for each C
function in the project, along with information on
the amount of code lines used to implement every
function. Not only that, but TrueSTUDIO can
provide other types of code metrics and even
measure the number of lines in files and functions
as well as the commenting level in the complete
project or specific files. You can easily use this as
part of your daily workflow, checking your code at
defined intervals to measure the quality of your
source code. Measuring and managing the code
complexity of the C functions in your project is one
of the cheapest and best ways of reducing the
number of bugs and maintenance cost in your
project.

@

~| Code Metric & B g~
'CortexM4_RTOS' Analysis

Total Files (Input File/Included File) 102 (48/54)

Functions 922

5L0C 26453

Comment Ratio 63%

=] Violation Summary ‘@ Violation [=| Code Metric 22
Metric: Lines x| 10)~ 10000 | Zp 'CM4_project’ Analysis
Function Mame Lines Complexity Total Files (Input File/Included File) 77(80/37)
© CAN_GetITStatus 8 2 Functions i
@ xQueueGenericReceive 148 27 sLoc . 2204
@ CAM_ClearITPending... 68 26 Comment Ratio 3% E Export View Content @ |
@ CAM_TransmitStatus 47 24 .
@ xQueueGenericsend 117 22 Metric: PLOC x| 0 T~ 10000 = :.‘.=:“> File name: PRID412_reportW23|
® dlasklencncCreate | 160 z File Name PLOC SLOC CommentRatio Path !
@ prvProcessReceivedC... 71 21 = — = o = | [¥|Use default location
© ts formatstring 57 20 %tm)t’_p”n : 487 141 74:? Src:tl Ci\Users\ASW-MNO-Admin\Export Er
© DMA_Delnit 11 17 &y T-”" . s 11s 23: srels
© vTaskincrementTick 73 17 & syscalls.c » " Fie Extension
_ L€l main.c 389 220 44% srchim)
@ ts_foermatlength 47 17 . DOC (.dod)
_ md_ith 47 14 2% srchm)
@ CRVP AFS FCR 164 15 7] HTML (html)
100 0F 922 rows | |- 1 of 10 page Ll md_it.c 233 103 56% srchm :
pad mé_conf.h 88 9 60% srem) PDF (pdf)
e mé_callback.c 38 16 58% srchm V| XLS (xls)
[. P R -
T7 of 77 rows | |« < 1of 1 page Select All Deselect All
| Export | [Cancel
Code metrics provide you with statistics on commenting and function

complexity. This can help identify areas for code improvement which

typically means less bugs and simplified maintenance.

© 2014 Atollic AB

For more information contact sales@atollic.com

Source Code Reviews

Similar to other code checking methodologies,
peer review can also help you reduce bugs and
defects early in the development. The principle is
to have a formal process where other developers
study the code and you study theirs at various
times during development, such as before an alpha
or beta release, or after implementing or rewriting
a key feature of your software.

Atollic TrueSTUDIO® is the first embedded systems
IDE to integrate features for source code reviews
and to run code review meetings as a standard
feature. The tool allows you to select the code for
review and then gives each reviewer tools to
comment on the code, indicating the type of
problem and the severity. TrueSTUDIO then
supports review meeting activities and tracks the
resolution of each comment.

Many different categories of problems can be
detected including, logic errors, portability
problems, coding standard violations, optimization
problems, etc. Each identified problem can then be
assigned a proposed level of severity.

A source code review is typically performed in
three stages:

1. The individual review phase where the
reviewers study the source code written by
colleagues and make comments. Potential
problems detected can for example be logic
errors, portability problems, coding standard
violations, optimization problems, etc. Each
identified problem can then be assigned a
proposed level of severity.

2. The team review phase where reviewers discuss
what to do with each identified problem area
in a code review meeting, and possibly assign
specific team members to rework the code.
The code review meeting may, for example,
decide a particular review comment is invalid,
is valid but shall not be fixed, or is valid and
must be corrected.

3. The rework/problem fixing phase where select
team members resolve the problems that have
been assigned to them. As each itemis
corrected and ticked off, the project manager
and other team members can monitor which
items have been corrected and which still need

attention.

Severity Summary File Li.. Resolution Reviewer
£ Minor Setting a define instead of numeric value srcfjoystick.c 61 Valid Meeds Fixing Richard
ﬁ MNormal Split into different source/header files srcfjoystick.c 30 Valid Fix Later Richard
Critical Angle of the tilt src/fjoystick.c 40 Valid Meeds Fixing Richard
& Critical Wrong handler! src/fjoystick.c 82 Valid Fix Later Richard
55 Critical ~ Offset must be checked! sre/fjoystick.c 55 Valid Meeds Fixing Richard
& Major Test LP-filter srefjoystick.c 57 Valid Won't Fix Lisa
5é Critical ~ Offset values? srcfjoystick.c 54 Valid Duplicate Lisa
& Major src/fjoystick.c 55 Valid Meeds Fixing Julia
Critical Double-check calibration of MEMS-sensor src/fjoystick.c 53 Valid Needs Fixing Julia
52?3 Minor MISRA viclation, none C-style comment sro/fjoystick.c 57 Valid Won't Fix ulia
Normal Change Alpha value to 95 srefjoystick.h 44 Valid Meeds Fixing Julia
Minor Return codes srefjoystick.c 90 Valid Won't Fix Adam
ﬁ Major Scope of variable srcfjoystick.c 34 Invalid Won't Fix Adam
& Major Change datatype? src/fjoystick.c 33 Valid MNeeds Fixing Adam

The Code Review Status Screen organizes problem areas identified by internal reviewers and tracks the

resolution of each item

© 2014 Atollic AB

For more information contact sales@atollic.com

Integrated Version Control System client

As complexity and code size grow for each year, so
does the problem of managing software and
development efforts. As the development
progresses over time, it is typical for thousands of
code changes to be made. If version control
methodology is not used, it very quickly becomes
unclear who made what changes, when and why.
As time goes on valuable information about what
the original code base looked like can be lost
forever, making it impossible to revert to a
previous code state of known working code.
Whether you are a single developer or you have a
large, geographically dispersed team, version
control offers significant benefits.

Atollic TrueSTUDIO integrates code management
features right into the C/C++ development
environment and provides a deeply integrated GUI
client for version control tools like Subversion and
GIT. Because you never have to leave the IDE you
can benefit from substantial productivity increases
over a separate, external version control system
client. You can easily track changes over time,
revert back to older code implementations,
compare different versions or branch- and merge
code bases developed in parallel.

D C/Ce v - Revison Graph (Cortestdd_RTOS [RevHEAD] - Atolic TrueSTUDIOR for ARME
| Ble Edit Source Fefacior View MNwvigate Sesrch Project Run Processor Bapet Window Help

=i AARAE!] B ™ e e -

€ (W] lciotle
Project Explorer - ¢ manc
4 &5 CorteM_RTOS 100 [svne//192.168,108.106/ opt/Dtnamw/repost ~
& Biraries
2t Includes
& Ubranies
3 Lndities
“ g 5¢C
FreeRTOS
(A cortex mée ite

=

cortes_méo_ith

5.

kemel_swe_traceh

t ¥ 86 [tunk)
3 Y Arunb/Coned_RTOS

4 $n:/7192 168 108 2108/ cpt/ Betnami/ repostory
¥ trnk 35
‘ branches 34
4 Post3.7 100
CortexhM_RTOS 100
a Vv g%
Pl Release venvion 3.7 56
‘ CorteshM_RTOS 96
csdata 87
settings 87
> Debug 87
& Librasies 87
Release 37 ConteM_RTOS/src/mainc
& review 87
we 96
tmpd7
&> Utilities 87

Revision Date
92 S/8/14, 10:50 AM
9 S/B/14, 1047 AM
L] S/B/14, 10:46 AM
.- B4, 1045 aM
83 S/B/14, 10:43 AM

code_review_properdtien 87
cproject §7
peoject 87

] cmd_flash.\d 87
cmé_flash_blid &7
Comex?M_RTOS.ef Jaunch 87
demo bt §7

. ROOT

trusk/Corted\M_RTOS/we

+ Reizion Graph (CortehM_RTOS [Rev:HEAD])

£ man.c

7 mems.c

B memih 91 [edt] l
SVN Repout...

¥ History
* # = | ® &
Changes Authoe Comment
1 [no sthor) 2dded comment for dead code remaoval
1 [ne sthod) Removed the mhele dePRECER() function which will not be used any meee.
1 [nc mthor] Tidy up some comments that were non C-style
1 [no author) removed Preceion Error fault located in vFaukTask)
1 [ne mthor] Fiand non C-style comment

Removed the whole doPRECER() function which will not be used any move.

Name

% main.c

R

v 96 [tag]
/tags/Release version 3.7
Corteshd_RTOS

g

m% v 5. C/Ce= | %9 Detug

52 Outine

- 100 {branch]
tranches/Postd 7/ Corted_RTOS

Path

trunk/Cetaa RTOS sre

Copied From

TrueSTUDIO version control view showing Subversion (SVN) integration

© 2014 Atollic AB

For more information contact sales@atollic.com

Integrated Bug Tracking and Issue
Management client

Atollic TrueSTUDIO is the first embedded IDE to
integrate GUI clients that connect to popular bug
database-, feature request- and issue management
systems like Trac, Bugzilla or Mantis.

Using one of the integrated issue database clients,
you can easily add new bug reports or feature
requests, change status of them or query the
database for issues or feature requests with
various filters, such as all resolved bugs in a specific
software release, all work tasks planned for an
upcoming release or all feature requests assigned
to myself for implementation. It is even possible to
add screenshots (that can be cropped and
annotated with arrows and text) as a file
attachment filed with bug reports.

A colleague can then for example see what your
debugger state looked like when you found the
bug. Atollic TrueSTUDIO also brings context
awareness to the bug report or feature request. If
you work on say 3 files when solving a bug, those 3
files will be automatically opened and the cursor
placed on the same places like last time, if the
same bug report is opened weeks or months later.

The issue management tracking system is a perfect
vehicle for planning and organizing the work in
software development teams, and many
development teams browse the issue
management system in their weekly team
meetings to discuss new bug reports, and prioritize
to-do items like bug reports or feature requests in
their weekly work planning.

B Plarning - Feature request: Customizable coloes om LCD - Atollic TrueSTUDIO® for ARME [~
| Ble Edit View Nevigate Procescr Egpert Window Help |
P . - 0" -m-2c {1 | B C/Coe 85 Debug [T Planming |

-, Project Explorer B Task List
- £ manc
4 35 ContehM_RTOS ~ [| X% 3]
 an
& Braies L boak b At ‘
si) Inchades xTaskCreate(v = = =
O Libraries P 4 Ly Al tickets [Exammple Trac]
Utiities xTaskCreate(o # 4 BUG: Cabbration routine for L1 senvo
“ we L, o T:Bug AddUser() cooupts stack
FreeRTOS xTaskCreate(\izxvrx! char * te’, LLF’:.EH:I-‘:YV-A‘)'—‘«,‘_‘JI:E, + 9 Festure reguent Customizable coliors en LCD
A TASK_PRIORITY, 8hStateTask) ot #
o cotes_mbiit.c xPashCreatel e CoSbned char-*) -».,..f-' configNINIAL_STA + 1- Request HMI language fiter
B coter micx,ith 2 MULL, sainFAULT_TASK_PRICRITY, BhFaultTask); B DHCP time-cut with Router
N kernel_swo_trace b - - & 3 BUG: A'D convension offset problem
o man.c » 5 Request: Resort language kst in HMI mstall menu
vTaskStartScheduler(); 4 & Reguest: A/D intermuge handler taking to much tim
& 5 BUG: Harcadt in toutine hSteteTavk
Properties - + 10: Problem with XML-RPC
® 11: BUG Hardfauk®!
Property v % 12: Add documnentation for Servo routines
*%; Festure request; Custornizable colors on LCD - .
%: Festure request: Customizable colors on LCD 3 13 Complesty 100 high in selectComSpeed)
@ Ticket9 Example Trac o v [&) submat 4 (G Blocker tickets (EBxample Trac)
. 3 4:BU cation routine for L1 serve
Feature request: Customizable colors on LCD ‘ !/® T Bug: AddUser() comupts stack
4 9 Feature request: Customizable colers on LCD
ton Creoted 13,2 15t Modification: May 6, 201 AM Last commented 6 - 3
MUS new Nov13, 2013 t May B 2014 3:45 AM '\ 6n o (2 Version10 [Example Trac)
v Attributes e 12 Add documentation for Servo routines
gt 30 & 13: Compledty toe high in selectComSpeed()
ent component 2
4 Uy Version 20 [Example Trac)
rirRy: Blocker = miestone3 > V& T Bug: AddUser() comupts stack
Type enhancemnent - ® 3 BUG A/D conversion offset pvoblem
' v Attachenents (1)
Yack B " Name Oescnption Se Crestor Created
) Task Repositones 0
£ screershot peg Problemi!! T28KB | e Nov 13, 2083 1.
4 L Tasks
0 tocal
4 Bugs Astach., | (L4 Attach Screenshot,
0, ecspsecry
0, Example Trac b Private
0. Mytyn-Mante Suppont
b ~ Description
Market is requesting customizable cokrs on LCD. See ticket #2379
'
@ Contest| B Trac

TrueSTUDIO features an integrated bug tracking client

© 2014 Atollic AB

For more information contact sales@atollic.com

Advanced Debugging Tools

Any developer with sufficient experience knows
that some bugs can be incredibly difficult to find.
This can cripple a project release schedule or add
costly field upgrades. A modern debugger needs to
include sophisticated capabilities for powerful
system analysis and advanced debugging to help
you avoid these scenarios.

Gone are the days when simple single-step/run-to-
breakpoint/printf-style debugging was sufficient
for reasonably sized projects. Today’s debugger
needs to include features for event-, data- and
instruction tracing to capture execution history for
later analysis, crash analyzers to help you work out
why your software brought the CPU into a fault
state, RTOS-specific kernel aware debugger
features, etc. Multiple processors or multiple cores
adds even more to the list of debugger capabilities.

W Fault Analyzer O]

¥ Hard Fault Detected e | |IPC »

»

Hard Fault Details

€ Triggered by bus, memery management or usage fault (FORCED)

«

Bus Fault Details

»

Usage Fault Details

© Indicates a divide by zero has taken place (DIVBYZERO)

Memory Management Fault Details ‘J

»

Register Content Duning Fault Exception

Name Value

Wasp (MSP) Ox2001ffcD

it 020000000

H ol

7] 00

iz} 020000000

a2]

Wil 08000509
| ¥pc 80004 ce

Wil xpsr 061000000

The value of the stack pointer when the fault occurred, Please verify that this
value points te a valid stack memory region.

MSP = Main Stack Peinter
| PSP = Process Stack Pointer -

Crash Analyzer for Cortex-M cores

What do you do after a system crash? Diagnosing
the reasons behind a system crash without good
tool support can be a time-intensive and an
incredibly frustrating effort. The system may
occasionally crash for no apparent reason, often
very rarely and perhaps only after hours of
execution, for example due to a sensor sometimes
sending out-of-range data. These types of
problems are very difficult to find. CPU faults occur
due to the software bringing the CPU into an
invalid state, for example due to memory
management problems, executing illegal
instructions or program errors like division by zero
or pointer errors, or various types of bus faults
such as accessing a word on an unaligned address.

TrueSTUDIO is the first embedded IDE to include a
crash analyzer, automatically what brought the
system into a fault state. In addition to visualizing
where the system crashed, the TrueSTUDIO crash
analyzer also tells you why it happened and under
what circumstances it crashed.

ok

LIS3020L_Read((uints_t*)ssbuff, LIS302DL_OUT X ADOR, 5); -

Average reading.
sccelfzAxis] = (accellzAxis]*AVG+sBbuff{ziniz]) / (AVG + 1)j
accel[yAxis] = (accel[yAxis]*AVG+s8buff[yaxis]) / (AVG + 1); |g
accel[xAxis] = (accel[xAxis])*AvVG+sBbuff[xaxis]) / (AVG + 1);

== Disassembly & {
Enter location here | & Ml |“::" re s v
| 9800158a: odds r2, r3, r2 - -
0800158c: movw r3, #6968 ; Ox1b38 ’
2300159¢: movt r3, R8192 ; 0x2000
05001594 : ldrb r3, [r3, 24)
88001596: sxth r3, r3

98: adds r2, r2, r3
mov.w r3, #9
9e: | sdiv r3, r2, r3

uxtb r2, r3

movw r3, 2696@ ; Oxib3e

movt r3, #8192 ; Ox2000 4
« m »

The Crash Analyzer for ARM Cortex-M can show
where and why the system crashed. The root cause
and location of system crashes can be easily identified
in seconds, rather than hours

© 2014 Atollic AB

-7- For more information contact sales@atollic.com

Advanced System Analysis
It is now possible to have greater visibility into the
dynamics of complex real-time embedded
applications than ever before. This visibility is
extremely useful not only in the increasingly
complex applications typically found in today’s
products, but in applications that cannot be halted .
for the debugging process.

Atollic TrueSTUDIO provides advanced features for

powerful debugging using event/data/software-
tracing with the Serial Wire Viewer (SWV), Serial
Wire Output (SWO) and Instrumentation Trace

Macrocell (ITM) technologies. These technologies

combined allow various types of data from the
running system to be output in real-time during full
execution speed, through the JTAG cable.

Being able to visualize the time evolution of
specific variables and other events as the

Locating sections of code that require
optimization

Locating specific lines of code that are
causing memory corruption

Determining whether or not interrupts are
firing as expected

The internal behavior of real-time
operating systems and other middleware

Atollic TrueSTUDIO includes a state-of-the-art

implementation of SWV real-time tracing with
powerful features for advanced system analysis,
including real-time graphical charts.

Real-time display of variable values or
memory address value

History log with all reads or writes to a
location, and what code line made them
Interrupt and exception tracing with
execution time statistics

application executes can give you valuable insights e Measuring execution time between two
into: independent locations in the code
e Whether or not control algorithms are e Graphical real-time charts
functioning properly e printf() redirection to 32 parallel and
e Whether or not memory locations are independent ITM ports
being corrupted inadvertently e Software tracing using ITM
e Whether or not pointers are behaving as Instrumentation
expected
|- SWV Exception Timeline Graph 3 @O il Kl F &S N @
0084345 - 0.008930s . el
) — —— 30 Number of events: ﬁ
L1 SWV Statistical Profiling 3 «; g:s:z:;nliw . SWV Data Trace 3 < @ % BE S
Function %inud» - 4 Exception retum Watch
r —— Comp Name Value
{ vApplicationldleHook() 23.53%
prinitialiseTaskLists) 2202% o g globaltlost 0894712
prvidleTask() 15.86% L 520000226 324061205
vApplicationTickHook() 1565%
prvCheckTasksWaitingT... ' 14.20% 0002 0004 0006 0008 001 0012 0014 0416 001 002 002 oo d;
VTaskMissedYield(7.79%| . = H;“°'y(9'°b"'”°“)v : o o -
ITM_Out(016% 119 0B001279 0x32 ceess s o
ts_formatstring() 016% 118 0x8000949 0x164 WRITE 07403759 0x8001580 327054317
: WRITE 0.80378443 0x8001580 328654308
swvPrint() 014% 104 08001231 0wi8
viaskSwitchContet) 010% 74 080026c9 Oxd6c ;jﬂi g‘;;";;::‘; gxizgg :;’;z;z):
ts_itoa() 0.05% 38 0x80008ad 0:9a -
vPortExitCritical(004% 31 060091d 038 - WENE i I L e
|- SWV DataTrace Timeline Graph 52 @ o & e (@8 335054064
Overflow packets: 0 PC Samples: 74716 S ——— 336654079
400 338254070
330854077
. . . . 341454068
Serial Wire Viewer technology gives 0 s
unique insight into the performance of o
. 46254289 =
your running system. U i ;i ;i

© 2014 Atollic AB

For more information contact sales@atollic.com

For example, the data trace view visualize variable-
or memory-values in real-time during full execution
speed non-intrusively, and it provides an accurate
history log of all reads- and writes- to a particular
location. A double-click on a particular read or
write in the memory access history log brings you
to the code line who made the read or write to
that variable or memory location. It is thus
incredibly easy to find out what code line
inadvertently overwrites a variable value
occasionally, for example.

The real-time event logs can be used to study how
interrupts fire, or their nesting. For execution time
measurement and optimization, statistical profiling
and execution time measurement capabilities are
included; for example by providing bar charts of
the execution time of various C functions,
measuring the execution time between two
independent parts of the software, or to study
interrupt handler min/max/average execution
times, etc. TrueSTUDIO also includes support for
software tracing using the ITM interface that is
part of SWV, enabling redirection of printf() output
to a debugger console over the JTAG cable, for
example.

H Trace Log 2

In addition to the SWV event- and data- tracing, a
modern debugger of today needs to support
ETM/ETB instruction tracing too, thus recording
the history of the execution flow for offline
analysis.

The instruction trace is particularly valuable in
systems where execution cannot be allowed to
stop on a breakpoint, for example motor control
applications. Using the instruction trace,
developers can anyhow understand the execution
flow when debugging the application. Due to the
huge amount of data recorded (100MB binary
packed or 5-10GB for human readable format, for
each second of execution time on a Cortex-M4)
advanced start/stop triggers or trace breakpoint
triggers typically control when trace recording
should be started and stopped, to reduce the
massive amount of data that is collected.

Developers can additionally “zoom” in- and out- to
get various levels of details, such as function trace,
C trace, Mixed mode trace or Assembly only trace.

Reama | (85X

Index Address Op Code Instruction Function Time it

24869128 aeealbedq 2bea cmp r3, #8 prvCheckTasksWaitingTermination N/A

24869121 Baea1bes d@3d 4 beg.n 1c64 <prvCheckTasksWaitingTerminati... pruCheckTasksWaitingTermination N/A
tasks.... L

24869123 Bepelcsd fle7e7es add.w r7, r7, #8 prvCheckTasksWaitingTermination N/A

24p69124 Bepelces 46bd mov sp, r7 prvCheckTasksWaitingTermination N/A

24869125 @eealcea bdaa + pop {r7, pc} prvCheckTasksWaitingTermination N/A
tasks.... if{ 1istCURRENT LIS...

24869127 BRE1aad T2480378 mowvw r3, #1260 ; Bx78 prvIdleTask N/A

24859128 B0081aad fecl73ff mowvt r3, #8191 ; Bxlfff prvIidleTask N/A

24869129 Bepelaad 681b 1dr r3, [r3, #e] prvIdleTask N/A

24869130 @eealaaa 2bal cmp r3, #1 prvIdleTask N/A

24869131 @eealaac daael = bls.n 1ab2 <prvIdleTask+@xles prvIdleTask N/A
tasks.... vApplicationIdleHoo...

24869133 @eealab2 f7fefedl =¢ bl 858 <wApplicationIdleHook:> prvIdleTask N/A -

Total (kB) : 12916

24069120/26162091

With instruction tracing, the execution flow is recorded in real-time. Trace start and stop trigger conditions can
be configured for advanced trace capture, and the instruction trace can be visualized in different levels of detail.

© 2014 Atollic AB

For more information contact sales@atollic.com

RTOS-Aware Debugging

Because commercial development tools are not
usually developed for use with a specific RTOS, the
debugger views are generic and are unable to
display kernel-specific data structures in any
meaningful way.

With kernel-aware debugging capability when the
debugger hits a breakpoint you can view the state
of RTOS objects such as tasks, semaphores,
mutexes and timers in much greater detail.

] Debug - CM3_ucos3/sre/uCOS-I/Source/os_prio.c - Atollic TrueSTUDIO for ARME
File Edit View MQX ProcessorExpet Run Window Help

When you combine Kernel-aware debugging and
Serial Wire Viewer event- and data- tracing, you can
get even more insights because you do not have to
stop the system to gather meaningful data.
TrueSTUDIO offers RTOS kernel aware debugging
for many popular real-time operating systems
including embOS, ThreadX, uC/OS, FreeRTOS and
RTXC.

TrueSTUDIO RTOS-

[% Er ER gl @S 0 o A BO-E-HE db .
35 Debug 52 T =g 30 Registers 57 gg g
4 [£] CM3_ucos3.elf [Embedded C/Cs+ Application] ' Name Value Des. su pports nine popu|ar
B %Mi}mf [1e:f (Suspended : Signal : SIGTRAP: Trace/bresk]) £ i 12 oz
4 ® Thread [1] <main> (Suspended : Signal : Trace/breakpoint trap) 3 e g 0:20002234 /
= 05 PrioGetHighest() at os_prio.c92 0x1b32 z.;;; ‘rp e RToseS SUCh as |.1C OS
= 0SSched at os core.ci373 02444 1 pe o
= 0STaskSemPend() at os_task.ci, 25 11180 i - fpp——
5% uC/OS-M Task List 52
em Name Prio State Pend On TicksRem CPUUsage Cb&wCtr IDT ST Stecklnfo StackUssge TaskQueue Task Queue Sent Tir
0 AppTaskThree 5 Delayed 10 0% 909 N/A N/A 0A0/128 00% 002 N/A
1 AppTaskTwo 4 Ready 0 0% 4999 N/A NJA 0/0/128 00% 0/0/2 N/A
2 AppTaskOne 6 Delayed 7 0% 50 M/A N/A 0/0128 00% 0/02 N/A
3 St 2 Suspended 0 0% 653 NA - N/A 007128 0% 000 N/A
4 UC/OSMTimerTask 11 Pending TaskSemaphore (Task Sem) 0 0% 50 N/A N/A 0/0/128 00% 000 N/A
= 5 uC/OSTick Task 10 Pending Task Semaphore (Task Sem) 0 0% 4999 N/A N/A 001128 0% 0/0/0 N/A
6 uC/OSMIdle Task 62 Ready 0 0% 4350 N/A N/A 0/0/128 0% 000 N/A
8 uC/OS-1I System Information 5] = B | &8 uC/0S Message Queues 54
Name Value ftem Name Size Entries Maxentries Pend List Entries Pend Lis
uC/0S-1I State uC/0S- Running 0 MsgBox 10 0 0 0
uC/0S-I Version 30200
CPU Usage N/A
Idle Task Counter 4357 @ Fault Analyzer 5T = a
Statistic Task Counter N/A Mo Fault Detected o
Tick Task Counter 1099 W/ No Fault Detecte =
Timer Task Counter 49 Hard Faut Details =
Context Switches 16010 Sus vt Deta .
Interrupt Nesting Counter 0 us Foult Details ¥
Masimurn Interrupt Disable Time N/A Usage Fault Details ¥
Scheduler Lock Nesting Counter 0 Memory Mansgement Fault Details v
Masimum Scheduler Lock Time N/A
Register Content During Fault Exception ¥

Summary

Many factors conspire together to make
embedded development challenging. More
complex application demands, more peripherals,
geographically dispersed teams or reduced team
size, shorter development schedules, and
demanding bosses are just some of the variables
that can add to the stress of your job and
jeopardized the success of your project.

TRADEMARK

We all know that good tools can make a dramatic
difference in developing code, especially in debug
and test. Affordable professional tools such as
Atollic TrueSTUDIO can help you write and
maintain higher quality code and dramatically
reduce the time and frustration of debugging.

Atollic, Atollic TrueSTUDIO and the Atollic logotype are trademarks or registered trademarks owned by Atollic. ECLIPSE™ is a registered trademark of
the Eclipse foundation. MISRA and "MISRA C" is a registered trademark of MIRA Ltd, held on behalf of the MISRA Consortium. All other product names

are trademarks or registered trademarks of their respective owners.

© 2014 Atollic AB

10

For more information contact sales@atollic.com

