
Advanced development and debugging of ARM-based devices

using Atollic TrueSTUDIO development tools

As any builder, handyman, or software developer knows, the right tools make all the difference in

meeting deadlines, working efficiently and delivering a quality product. In embedded development the

quality of your tools often determines the length and difficulty of the project schedule, particularly

when it comes to debugging, test, and software optimization.

Most developers will acknowledge that writing

code is the easy part. But a nasty bug—whether it

is a race condition, a seemingly random artifact or

an unpredictable crash condition can leave a

developer ready to tear his hair out. This is due in

large part to ever-increasing system complexity as

competitive pressure and market opportunity

introduces new features within already tight

delivery schedules.

Your challenge as the developer is to find

development tools you can trust: tools that are

easy and intuitive to use with powerful features

that can assist you in writing better code and in

resolving difficult problems or isolating hard-to-

find bugs; and a knowledgeable and responsive

tech support team to assist when you can’t figure

out how to use the tool in your situation.

In this paper we will show you how the right tools

can help you efficiently develop high quality

software on ARM-based microcontrollers using the

Atollic TrueSTUDIO C/C++ IDE. Since most

development tools give you an editor, compiler,

linker and debugger, we are going to spend time in

this article on some of the advanced features that

are not usually available in embedded tool chains.

We will touch on tools to help you improve the

quality of your code and look at advanced

debugging capabilities using powerful software

visualization and analysis.

© 2014 Atollic AB - 2 - For more information contact sales@atollic.com

Overview

Atollic® TrueSTUDIO® development tools for

ARM® devices are a step above other IDEs with an

unmatched feature set for professional software

development. These are the kind of tools you want

on your desktop if you are serious about your code

and about keeping your project on track.

Some of these powerful features include project

wizards, parallel compilation, MISRA-C checking,

code complexity analysis, and source code review

features plus RTOS-aware debugging with a built-in

crash analyzer, support for multicore and multi-

processor debug, event-, data- and instruction

tracing, peripheral register viewers, and real-time

variable watch.

High quality code starts at the beginning
One way to reduce the number of bugs you need

to track down is to improve the quality of the code

you write in the first place. Since there are

numerous books and articles on the topic of

writing quality code we will not go into great detail

on this topic. What we will say is that the right

tools and development process can assist you in

avoiding problematic code.

Integrated Code Analysis Tools

One way to assist you in improving code quality is

to use static source code analysis tools. Such tools

can examine the code you have written and give

you a report back to help you make improvements.

If such tools are integrated into the IDE it is even

easier to apply these benefits rather than jumping

in an out of your development environment.

Checking your code against a best-practice coding

standard such as MISRA®-C can help you ensure

that you are not using unsafe, unreliable or non-

portable constructs in your software.

The integrated MISRA-C checker shows a violation summary with graphical display showing types of errors

© 2014 Atollic AB - 3 - For more information contact sales@atollic.com

Even if you are well trained in the MISRA standard

it is impossible to ensure coding standards

compliance without support from a tool.

TrueSTUDIO comes with a highly standards-

compliant integrated MISRA-C code checker. When

enabled, TrueSTUDIO automatically checks your

code for compliance and identifies any code lines

that break MISRA-C rules. It is the only embedded

IDE that explains the MISRA rule for offending

lines, and gives examples of good and bad code for

each rule. Many developers use it as a teaching-aid

because it highlights what code construct

triggered the MISRA violation and shows you how

to rewrite the code to remove the violation. Our

MISRA checker additionally provides compliance

statistics in textual and graphical format, for a

quick at-a-glance overview of the current state.

Code Complexity Analysis and Code Metrics
The complexity of your code is often an indicator

of future problems because code that is too

complex can be difficult to understand, test and

maintain. The more iterations and conditional code

a function has, the higher its complexity level and

the more likely it is to include more errors.

Fortunately, TrueSTUDIO includes a helpful tool

that uses an industry-standard algorithm to

measure the complexity of your code. Code

complexity can easily be viewed for each C

function in the project, along with information on

the amount of code lines used to implement every

function. Not only that, but TrueSTUDIO can

provide other types of code metrics and even

measure the number of lines in files and functions

as well as the commenting level in the complete

project or specific files. You can easily use this as

part of your daily workflow, checking your code at

defined intervals to measure the quality of your

source code. Measuring and managing the code

complexity of the C functions in your project is one

of the cheapest and best ways of reducing the

number of bugs and maintenance cost in your

project.

Code metrics provide you with statistics on commenting and function

complexity. This can help identify areas for code improvement which

typically means less bugs and simplified maintenance.

© 2014 Atollic AB - 4 - For more information contact sales@atollic.com

Source Code Reviews
Similar to other code checking methodologies,

peer review can also help you reduce bugs and

defects early in the development. The principle is

to have a formal process where other developers

study the code and you study theirs at various

times during development, such as before an alpha

or beta release, or after implementing or rewriting

a key feature of your software.

Atollic TrueSTUDIO® is the first embedded systems

IDE to integrate features for source code reviews

and to run code review meetings as a standard

feature. The tool allows you to select the code for

review and then gives each reviewer tools to

comment on the code, indicating the type of

problem and the severity. TrueSTUDIO then

supports review meeting activities and tracks the

resolution of each comment.

Many different categories of problems can be

detected including, logic errors, portability

problems, coding standard violations, optimization

problems, etc. Each identified problem can then be

assigned a proposed level of severity.

A source code review is typically performed in

three stages:

1. The individual review phase where the

reviewers study the source code written by

colleagues and make comments. Potential

problems detected can for example be logic

errors, portability problems, coding standard

violations, optimization problems, etc. Each

identified problem can then be assigned a

proposed level of severity.

2. The team review phase where reviewers discuss

what to do with each identified problem area

in a code review meeting, and possibly assign

specific team members to rework the code.

The code review meeting may, for example,

decide a particular review comment is invalid,

is valid but shall not be fixed, or is valid and

must be corrected.

3. The rework/problem fixing phase where select

team members resolve the problems that have

been assigned to them. As each item is

corrected and ticked off, the project manager

and other team members can monitor which

items have been corrected and which still need

attention.

The Code Review Status Screen organizes problem areas identified by internal reviewers and tracks the

resolution of each item

© 2014 Atollic AB - 5 - For more information contact sales@atollic.com

Integrated Version Control System client
As complexity and code size grow for each year, so

does the problem of managing software and

development efforts. As the development

progresses over time, it is typical for thousands of

code changes to be made. If version control

methodology is not used, it very quickly becomes

unclear who made what changes, when and why.

As time goes on valuable information about what

the original code base looked like can be lost

forever, making it impossible to revert to a

previous code state of known working code.

Whether you are a single developer or you have a

large, geographically dispersed team, version

control offers significant benefits.

Atollic TrueSTUDIO integrates code management

features right into the C/C++ development

environment and provides a deeply integrated GUI

client for version control tools like Subversion and

GIT. Because you never have to leave the IDE you

can benefit from substantial productivity increases

over a separate, external version control system

client. You can easily track changes over time,

revert back to older code implementations,

compare different versions or branch- and merge

code bases developed in parallel.

TrueSTUDIO version control view showing Subversion (SVN) integration

© 2014 Atollic AB - 6 - For more information contact sales@atollic.com

Integrated Bug Tracking and Issue

Management client
Atollic TrueSTUDIO is the first embedded IDE to

integrate GUI clients that connect to popular bug

database-, feature request- and issue management

systems like Trac, Bugzilla or Mantis.

Using one of the integrated issue database clients,

you can easily add new bug reports or feature

requests, change status of them or query the

database for issues or feature requests with

various filters, such as all resolved bugs in a specific

software release, all work tasks planned for an

upcoming release or all feature requests assigned

to myself for implementation. It is even possible to

add screenshots (that can be cropped and

annotated with arrows and text) as a file

attachment filed with bug reports.

A colleague can then for example see what your

debugger state looked like when you found the

bug. Atollic TrueSTUDIO also brings context

awareness to the bug report or feature request. If

you work on say 3 files when solving a bug, those 3

files will be automatically opened and the cursor

placed on the same places like last time, if the

same bug report is opened weeks or months later.

The issue management tracking system is a perfect

vehicle for planning and organizing the work in

software development teams, and many

development teams browse the issue

management system in their weekly team

meetings to discuss new bug reports, and prioritize

to-do items like bug reports or feature requests in

their weekly work planning.

TrueSTUDIO features an integrated bug tracking client

© 2014 Atollic AB - 7 - For more information contact sales@atollic.com

Advanced Debugging Tools
Any developer with sufficient experience knows

that some bugs can be incredibly difficult to find.

This can cripple a project release schedule or add

costly field upgrades. A modern debugger needs to

include sophisticated capabilities for powerful

system analysis and advanced debugging to help

you avoid these scenarios.

Gone are the days when simple single-step/run-to-

breakpoint/printf-style debugging was sufficient

for reasonably sized projects. Today’s debugger

needs to include features for event-, data- and

instruction tracing to capture execution history for

later analysis, crash analyzers to help you work out

why your software brought the CPU into a fault

state, RTOS-specific kernel aware debugger

features, etc. Multiple processors or multiple cores

adds even more to the list of debugger capabilities.

Crash Analyzer for Cortex-M cores
What do you do after a system crash? Diagnosing

the reasons behind a system crash without good

tool support can be a time-intensive and an

incredibly frustrating effort. The system may

occasionally crash for no apparent reason, often

very rarely and perhaps only after hours of

execution, for example due to a sensor sometimes

sending out-of-range data. These types of

problems are very difficult to find. CPU faults occur

due to the software bringing the CPU into an

invalid state, for example due to memory

management problems, executing illegal

instructions or program errors like division by zero

or pointer errors, or various types of bus faults

such as accessing a word on an unaligned address.

TrueSTUDIO is the first embedded IDE to include a

crash analyzer, automatically what brought the

system into a fault state. In addition to visualizing

where the system crashed, the TrueSTUDIO crash

analyzer also tells you why it happened and under

what circumstances it crashed.

The Crash Analyzer for ARM Cortex-M can show

where and why the system crashed. The root cause

and location of system crashes can be easily identified

in seconds, rather than hours

© 2014 Atollic AB - 8 - For more information contact sales@atollic.com

Advanced System Analysis

It is now possible to have greater visibility into the

dynamics of complex real-time embedded

applications than ever before. This visibility is

extremely useful not only in the increasingly

complex applications typically found in today’s

products, but in applications that cannot be halted

for the debugging process.

Atollic TrueSTUDIO provides advanced features for

powerful debugging using event/data/software-

tracing with the Serial Wire Viewer (SWV), Serial

Wire Output (SWO) and Instrumentation Trace

Macrocell (ITM) technologies. These technologies

combined allow various types of data from the

running system to be output in real-time during full

execution speed, through the JTAG cable.

Being able to visualize the time evolution of

specific variables and other events as the

application executes can give you valuable insights

into:

 Whether or not control algorithms are

functioning properly

 Whether or not memory locations are

being corrupted inadvertently

 Whether or not pointers are behaving as

expected

 Locating sections of code that require

optimization

 Locating specific lines of code that are

causing memory corruption

 Determining whether or not interrupts are

firing as expected

 The internal behavior of real-time

operating systems and other middleware

Atollic TrueSTUDIO includes a state-of-the-art

implementation of SWV real-time tracing with

powerful features for advanced system analysis,

including real-time graphical charts.

 Real-time display of variable values or

memory address value

 History log with all reads or writes to a

location, and what code line made them

 Interrupt and exception tracing with

execution time statistics

 Measuring execution time between two

independent locations in the code

 Graphical real-time charts

 printf() redirection to 32 parallel and

independent ITM ports

 Software tracing using ITM

instrumentation

Serial Wire Viewer technology gives

unique insight into the performance of

your running system.

© 2014 Atollic AB - 9 - For more information contact sales@atollic.com

For example, the data trace view visualize variable-

or memory-values in real-time during full execution

speed non-intrusively, and it provides an accurate

history log of all reads- and writes- to a particular

location. A double-click on a particular read or

write in the memory access history log brings you

to the code line who made the read or write to

that variable or memory location. It is thus

incredibly easy to find out what code line

inadvertently overwrites a variable value

occasionally, for example.

The real-time event logs can be used to study how

interrupts fire, or their nesting. For execution time

measurement and optimization, statistical profiling

and execution time measurement capabilities are

included; for example by providing bar charts of

the execution time of various C functions,

measuring the execution time between two

independent parts of the software, or to study

interrupt handler min/max/average execution

times, etc. TrueSTUDIO also includes support for

software tracing using the ITM interface that is

part of SWV, enabling redirection of printf() output

to a debugger console over the JTAG cable, for

example.

In addition to the SWV event- and data- tracing, a

modern debugger of today needs to support

ETM/ETB instruction tracing too, thus recording

the history of the execution flow for offline

analysis.

The instruction trace is particularly valuable in

systems where execution cannot be allowed to

stop on a breakpoint, for example motor control

applications. Using the instruction trace,

developers can anyhow understand the execution

flow when debugging the application. Due to the

huge amount of data recorded (100MB binary

packed or 5-10GB for human readable format, for

each second of execution time on a Cortex-M4)

advanced start/stop triggers or trace breakpoint

triggers typically control when trace recording

should be started and stopped, to reduce the

massive amount of data that is collected.

Developers can additionally “zoom” in- and out- to

get various levels of details, such as function trace,

C trace, Mixed mode trace or Assembly only trace.

With instruction tracing, the execution flow is recorded in real-time. Trace start and stop trigger conditions can

be configured for advanced trace capture, and the instruction trace can be visualized in different levels of detail.

© 2014 Atollic AB - 10 - For more information contact sales@atollic.com

RTOS-Aware Debugging
Because commercial development tools are not

usually developed for use with a specific RTOS, the

debugger views are generic and are unable to

display kernel-specific data structures in any

meaningful way.

With kernel-aware debugging capability when the

debugger hits a breakpoint you can view the state

of RTOS objects such as tasks, semaphores,

mutexes and timers in much greater detail.

When you combine Kernel-aware debugging and

Serial Wire Viewer event- and data- tracing, you can

get even more insights because you do not have to

stop the system to gather meaningful data.

TrueSTUDIO offers RTOS kernel aware debugging

for many popular real-time operating systems

including embOS, ThreadX, µC/OS, FreeRTOS and

RTXC.

Summary
Many factors conspire together to make

embedded development challenging. More

complex application demands, more peripherals,

geographically dispersed teams or reduced team

size, shorter development schedules, and

demanding bosses are just some of the variables

that can add to the stress of your job and

jeopardized the success of your project.

We all know that good tools can make a dramatic

difference in developing code, especially in debug

and test. Affordable professional tools such as

Atollic TrueSTUDIO can help you write and

maintain higher quality code and dramatically

reduce the time and frustration of debugging.

TRADEMARK

Atollic, Atollic TrueSTUDIO and the Atollic logotype are trademarks or registered trademarks owned by Atollic. ECLIPSE™ is a registered trademark of

the Eclipse foundation. MISRA and "MISRA C" is a registered trademark of MIRA Ltd, held on behalf of the MISRA Consortium. All other product names

are trademarks or registered trademarks of their respective owners.

TrueSTUDIO RTOS-

aware debugging

supports nine popular

RTOSes such as µC/OS.

